統計数字を読み解くセンス―当確はなぜすぐにわかるのか?(DOJIN選書27)
日常生活を過ごす上で「統計の結果によりますと…」という言葉を聞かない日はまずないと思います。TV視聴率や選挙速報(得票率)など典型的な例ですね。統計に表れる数字が実際に大きいのか小さいのか判断に難しいということも よくあります。中には"統計数字"と"実感"との間にギャップが感じられることも結構あります。(* 下注) そんな実例を数多く挙げて統計の面白さを(数学的な難しい議論は回避しつつ)初学者に解説している好著です。
統計数学に関係する法則も色々と紹介されています:ベンフォードの法則、ジップの法則、パレートの法則、ジニ係数。パラドックスの話題もあります(シンプソンのパラドックス)。相関関係と因果関係の相違・"見かけの相関"に関する議論も丁寧にされています。(サラリーマンの年収と血圧の間に相関?、をどう読み解くか) 相関係数より決定係数(相関係数の2乗)の方が納得しやすい、といった有益なコメントも随所にあります。
企業研究者として、新人研修で使ってみたい話題が満載でした。(^-^) 著者のホームページも面白いのでご覧になるとよいでしょう。
数学を出来るだけ使わない入門書としての性格上、やや議論が天下りになっている部分が多少ありますが、それは他書で補うとよいでしょう。
(*)たとえば検診結果の陽性・陰性の判定。本書の例では『500人に1人の割合(0.2%)でかかる病気の検診で罹患者に「病気の疑いあり」と正しく結果が出る確率が99%、健常者に「病気の疑いがありません」と正しく結果が出る確率が99%のときに、「病気の疑いあり」と結果の出た人のうち本当に病気である確率は?』これは"ベイズ確率"に慣れがある人には自明の問題ですが、本書では"ベイズ確率"云々と初心者には小難しい話は抜きにして、表(真陽性,偽陽性,真陰性,偽陰性)に数字を実際に当てはめて、確率(約17%)を求めています。
プレゼンはテレビに学べ!
テレビは、視聴率という数字のもと、視聴者にいかに見ていただき、楽しんでいただけるか
という事を目標としています。
つまり何をどう伝え、どう見せるのかを研究し尽くしているのは
テレビに出ている方々という事ですが、本当にそうやなぁと思いました。
中に書いてある技術的なものも、プレゼン、ブランディング、柔らかい売り込みの仕方など
参考になる点も多くあります。
これを読んでテレビを見てみるのも面白いかも知れません。